you can use a starter sheet or just a blank sheet of paper :)

Starter

Write down the three transformations that we learned yesterday. Make sure to include a brief explanation of each one.

1) Translation: up, down, to the side

2) Reflection: flip/mirrov

3) Rotation: Spin/wirro

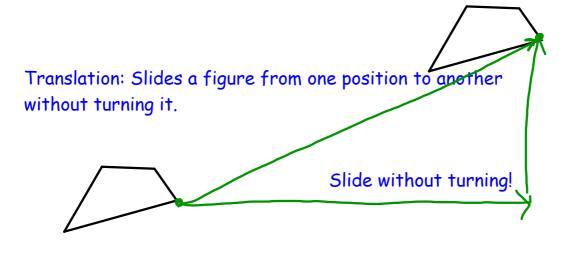
Aug 27-2:59 PM

Todays Goal

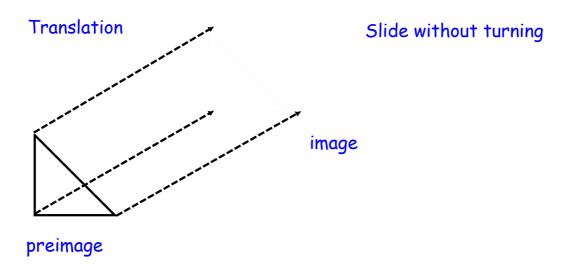
Unit 4 Day 2

I can ...

Translate a figure vertically and/or horizontally.

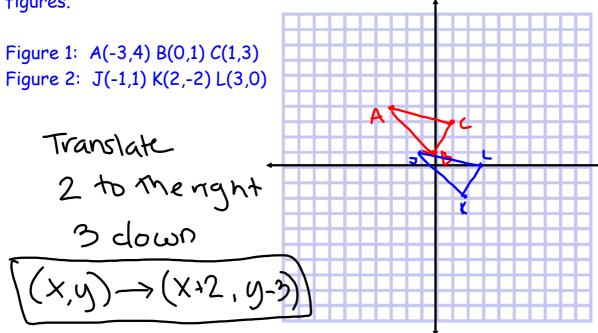

Find the rules of translation.

Reflect a figure over a given line.

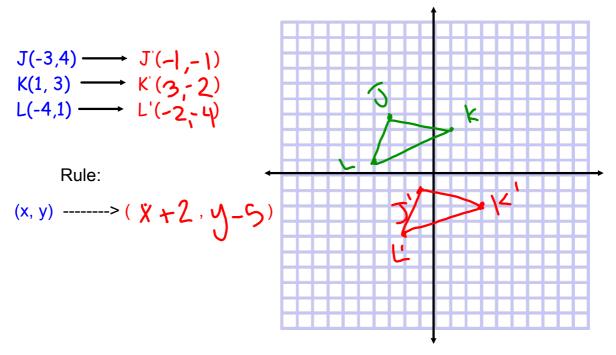

Find the rules for reflection.

Unit 4 - Day 2 Translations

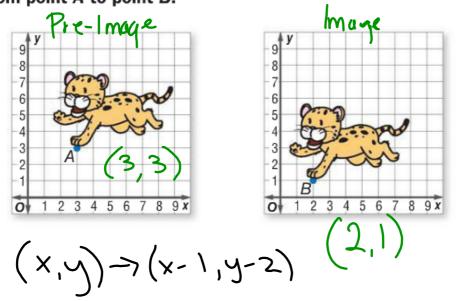
Transformation: an operation that maps an original geometric figure, the preimage, onto the new figure called the image.



Feb 13-6:27 AM

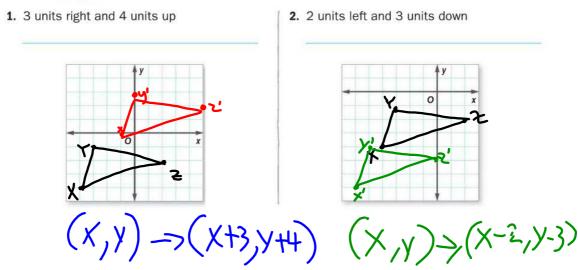

Translations make congruent figures. Same size same shape, same angles, etc.

Graph the following points to create two figures.



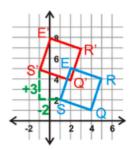
Feb 13-6:40 AM

Graph $\triangle JKL$ with vertices J(-3, 4), K(1, 3), and L(-4, 1). Then graph the image of $\triangle JKL$ after a translation 2 units right and 5 units down. Write the coordinates of its vertices.



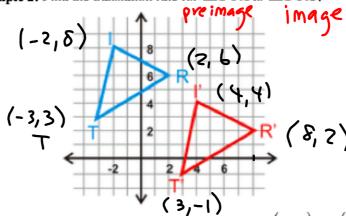
A computer image is being translated to create the illusion of movement. Use translation notation to describe the translation from point A to point B.

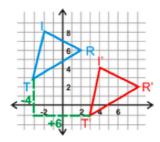
Feb 13-6:50 AM


Graph $\triangle XYZ$ with vertices X(-4, -4), Y(-3, -1), and Z(2, -2). Then graph the image of $\triangle XYZ$ after each translation, and write the coordinates of its vertices. (Example 1)

preimage -> image

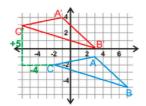
Example 1: Graph square $S(1,2), Q(4,1), R(5,4)_{\text{and}} E(2,5)$. Find the image after the translation $(x,y) \to (x-2,y+3)$ Then, graph and label the image.


Solution: We are going to move the square to the left 2 and up 3.


$$(x,y) \to (x-2,y+3)$$

 $S(1,2) \to S(-1,5)$
 $Q(4,1) \to Q(2,4)$
 $R(5,4) \to R(3,7)$
 $E(2,5) \to E(0,8)$

Oct 25-8:57 PM


Example 2: Find the translation rule for $\triangle TRI$ to $\triangle TRI$.

Solution: Look at the movement from T to T. The translation rule is $(x,y) \to (x+6,y-4)$.

Example 4: Triangle $\triangle ABC$ has coordinates $A(3,-1), B(7,-5)_{\text{and}} C(-2,-2)$. Translate $\triangle ABC$ to the left 4 units and up 5 units. Determine the coordinates of $\triangle ABC$.

Solution: Graph $\triangle ABC$. To translate $\triangle ABC$, subtract 4 from each x value and add 5 to each y value.

$$A(3,-1) \rightarrow (3-4,-1+5) = A(-1,4)$$

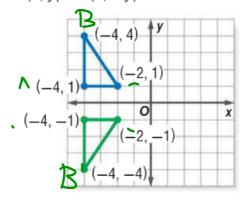
 $B(7,-5) \rightarrow (7-4,-5+5) = B(3,0)$
 $C(-2,-2) \rightarrow (-2-4,-2+5) = C(-6,3)$

The rule would be $(x,y) \rightarrow (x-4,y+5)$.

Mar 6-8:37 PM

Reflections

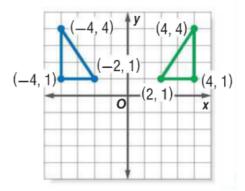
Over the x-axis


Words To reflect a figure over the *x*-axis, multiply the

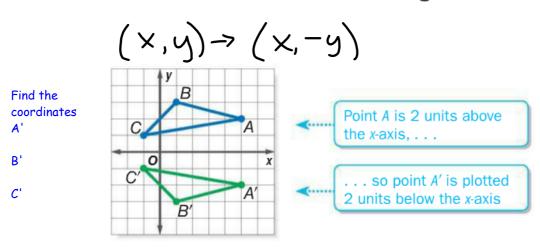
y-coordinates by -1.

Symbols

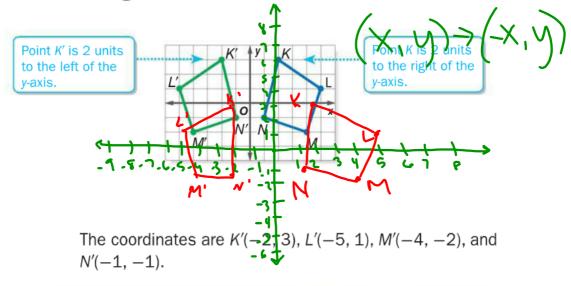
$$(x, y) \rightarrow (x, -y)$$


Models

Over the y-axis


To reflect a figure over the y-axis, multiply the x-coordinates by -1.

$$(x, y) \rightarrow (-x, y)$$


A reflection is a mirror image of the original figure. It is the result of a transformation of a figure over a line of reflection.

Triangle ABC has vertices A(5, 2), B(1, 3), and C(-1, 1). Graph the figure and its reflected image over the x-axis. Then find the coordinates of the vertices of the reflected image.

Feb 14-8:30 AM

Quadrilateral *KLMN* has vertices K(2, 3), L(5, 1), M(4, -2), and N(1, -1). Graph the figure and its reflection over the y-axis. Then find the coordinates of the vertices of the reflected image.

Feb 12-8:35 AM